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Abstract 

The problem of the gauge variance or invariance of action functions in classical mechanics 
is discussed from a group and path-theoretic viewpoint. By using the elementary theory 
of the cohomology of groups, criteria are introduced which enable one to decide when 
action functions gauge variant under a kinematical group are equivalent to action 
functions invariant under the transformations of the group. The criteria are applied to 
action functions gauge variant under Lorentz and Galilei transformations, where we 
deduce that any action function gauge variant under the Lorentz group is equivalent to 
an action function invariant under Lorentz transformations, whilst action functions 
gauge variant under the Galilei group are not necessarily equivalent to Galilei-invariant 
action functions. It is also shown that any action function gauge variant in a more 
restricted fashion which we define in the text, is necessarily equivalent to a 'kinetic-energy' 
action. 

1. Introduction 

The motivat ion for  this article was provided by a recent paper  o f  J. M. 
L6vy-Leblond. In that  article L6vy-Leblond (1969) was able to link the 
problem of  the gauge variance or  invariance o f  Lagrangians to the quan tum 
mechanical  problem & c o m p u t i n g  the ray representations o f  the kinematical 
group of  the underlying space-time. The latter problem, the calculation o f  
the ray representation o f  a group,  is a problem in the cohomology  theory o f  
groups. Here we discuss the gauge variance o f  action functions under  
t ransformations on the underlying space-time using group and path  
theoretic methods,  particularly the cohomology  of  groups. We shall show 
how it is o f  more  relevance to the gauge variance or invariance o f  action 
functions to compute  a first cohomology  group o f  a certain cochain complex 
(L~vy-Leblond calculated via a related second cohomology  group). The 
connexion between our  first cohomology  group and the second cohomology  
group used by L6vy-Leblond has been established elsewhere (Whiston, 
1969) and will not  be pursued here. 
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For convenience of calculation we shall define four types of  gauge 
variance of an action function under a transformation group Q. These are 
respectively Q-variance, weak Q-variance, Q-covariance and weak Q- 
covariance, a progressively stronger sequence of 'invariances' of  action 
functions under transformations of  Q. We shall see that action functions 
which are weakly Q-variant or weakly Q-covariant are equivalent to action 
functions invariant under Q. The main purpose of this article is to establish 
when Q-variance or Q-covariance imply weak Q-variance or weak Q- 
covariance. 

The first part of our discussion is concerned with the definition of an 
action function as a function on paths in a topological space. Here we shall 
discuss (in a non-rigorous fashion) paths in topological spaces and groups 
only as far as we need to define our problem. The second part centres on the 
definition of the above-mentioned types of  variance of action functions 
under a group Q of transformations on the topological Q-module carrying 
a representation of  Q on whose paths an action function is defined. Lastly, 
we apply our formalism to the study of the gauge variance of  action 
functions in classical relativistic and non-relativistic mechanics. 

(1) Paths (see Spanier Algebraic Topology) 
Let Tbe  a topological space. One says that 7-1, 7-2 ~ Ta re  connected by a 

path on T if there is an 

~ Map(/, T) 

( / is  the unit closed interval in R, and map means continuous function) such 
that 0~(0) = 7-1, e(1) = 7-2. Denote all such paths by g2(7-1,7-2). I f  & ~ g2(7- b r2) 
we shall write ~:7-1 -->72. The relation 7-1 ~~2 iff ~(7-1,"/'2)~ is an 
equivalence relation in T and splits T into path components. T is said to be 
pathwise connected if there exists a point 7- of T whose component is T. We 
shall assume from now on that T is pathwise connected. Given e:7-~ -+ 7-2 
we shall write s(e) = 7-1 =- c~(0) and e(e) = 7-2 = e(1) for the 'start' and 'end' 
o r e  respectively. The collection f2(T) of all paths in Thas a binary operation 
defined as follows. Given el, c~2 e f2(T) such that e(~l)=S(ea)  we may 
define a path ez ^ el from s(el) to e(c~2) using the glueing lemma. Without 
going into detail, ~2 ^ ~ is cq :s(e~) ~ e(e~) and then eE:S(~2) = e(e~) 
e(e2). 

Now let us suppose that T is a pathwise connected topological Q-module 
for some topological group Q. Then T is an Abelian group and there is a 
homomorphism 

p ~ Hom(Q, Aut(T)) 

p(q):7- F-~- q.7- f o r q ~  Q 

such that (q, 7-) ~ q. 7- is a continuous function. Because T is a Q-module, 
Q operates on the family of paths ~2(T) in T. Given ~:7-~ ~ 7-2 there is a 
path q. ~ :q. 7-1 --~ q- 7-2 defined by q. ~: t ~-~ q. ~(t) for all t ~ L Clearly q. 
is a map and hence a path. This action of  Q in ~2(T) also induces an action 
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of Q in the Abelian group Fun(f2(T), R) of real-valued functions on D(T) 
under pointwise addition. 

N o w  Tis a topological group and also operates on f2(T). Given ** ~ D(T) 
there is a path r.** from r.s(**) to r.e(**) for any r ~ T defined by 

r. **: t ~ r**(t) for t e L 

Because of  this we may translate any path to the identity 

�9 Q ( r l ,  "/'2) = "rl. ~2(eT, r-{ 1. r2 )  

Given r e T let us write AT(r) = s r) and A(T) for the family of  all 
AT(~). The family A(T) has a binary relation related to the one we define 
above. Let *.1 e At(r1), c~2 ~ Ar(r2) and define *.1 *.2 :I---> T by the recipie 

�9 *l **2:t ~ *.1(0 **2(0 for t ~ I 

Note that s(**l **2) = S ( * * l ) S ( * * 2 )  = er  and  e(** 1 **2) = e(**l) e(**2). Clearly *.1 **2 
is a map so that *.1 **2 e Ar(r l  r2). In fact we have 

A r ( r l ) .  At(r2) = Az(rl ra) 

for any r , ,  r2 e T. Moreover, the set of loops at er :-Ar(er) is an identity 
for this (associative) composition and we may denote Ar(r -I) by At(r) -1. 
In this case Ar is an isomorphism 

A r : T g  A(T) 

2. 'Action Functions' 

We shall define an action function as follows. 

Definition (1) 

An 'action function' is any 'semigroup' function 

A e Fun(/2(T), R) 

from the set of paths in a pathwise connected space T to the reals. If  T is a 
topological group, the sets O(T) and A(T) coincide and moreover A(T) is a 
group isomorphic to T, so that an action function is definable also on A(T). 
We now define the notion of  equivalence of  two action functions, noting 
that the sets Fun(/2(T), R), Fun(A(T), R) are Abelian groups under point- 
wise addition; and are Q-modules when T is a topological Q-module. 

Definition (2) 

Two action functions A1 and A2 are equivalent, AI ~- A2, iffV ** ~/2(T), 

AI(**) = A2(~) + 4(**) 

where ~b is a function such that 

4(*.1) = ~(**z) if **2 ~/2(s(*.1), e(~l)) 

depends only on the end points of any path. 
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The function q~ e Fun(Q(T), R) hence defines a function 4" on the 
collection A(T) of sets of paths by 

~*(AT(~')) = q~(~) when a ~ AT(Z), e(~) = ~" 

Recall that Q operates on the groups Fun(t2(T), R) and Fun(A(T), R) we 
shall now define the notion of  Q-variance of action functions. 

Definition (3) 
An action function A is called Q-variant iff 

A q ~ _ A V q ~ Q  

This means that A" (~ )=A(~)+  ~a(q)(~) at each path ~ E s where 
~ba c Fun(Q, Fun(O(T),R)). As we saw above, q~a defines a function 
~b* c Fun(Q, Fun(A(T), R)) where ~*(q)(AT(r)) = ffa(q)frO, e(~) = r. The 
following proposition is a trivial consequence of the definitions and the 
material in the appendix: 

Proposition (4) 

If  A is Q-variant, then 

dpA c ZpJ(Q, Fun(I2(T), R)) 

(q~* e Zpl(Q, Fun(A(T), R))). 

Proof: By the definition of q~a, 

Aq(a) = A(~) + ~A(q) (~) V c~ ~ ~(T)  

Therefore, using the fact that A q~q~ = (A~I) q2, we obtain 

A","2(c 0 = A(a) + (oA(q, q2) (a) = A(a) + ~a(ql) (a) + ~ba(qz)"' (a) 

Therefore 
Sa(ql) + q~a(q2) ~ - *fiA(q, qz) = 0 

o r  

~a ~ Zpl(Q, Vun(O(T), R)) 

In exactly a similar way, one shows that 

d?* e Zp~(Q, Fun(A(T), R)) 

This proposition motivates the below definition: 

Definition (5) 
An action function A is said to be weakly Q-variant iffit is Q-variant and 

~a ~ BJ(Q,  Fun(O(T), R)) 
and 

(4* c Bv'(Q, Vun(A(T), a))) 

The importance of this definition is shown by the proposition below. 
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Proposition (6) 
If  an action function is weakly Q-variant, it is equivalent to an action 

invariant under Q. 

Proof: If  an action function A is weakly Q-variant then 

Aq(~) = A(~) + q~a(q) (~) where q~A ~ Bpl(Q, Fun(O(T), R)) 

But then 6A(q) = ~bA ~ - ~ba where ~b ~ Fun(g2(T), R) by the definition of a 
one coboundary. Consequently 

A~(~) - ~A~(~) = A(~) - ~a(~) 

Thus the action function A' - A - ~bA which is equivalent to A is invariant 
under the transformations of  Q. 

We can now establish a criterion for the coincidence of  Q-variance with 
weak Q-variance: 

Proposition (7) 
Any Q-variant action function is weakly Q-variant and hence equivalent 

to an action function invariant under Q iff 

Hpa(Q, Vun(A(T), R)) = 0 

Proof: If H.'(Q, Fun(A(T), a)) = 0. B I(Q, Fun(A(T), a)) = 
Zpl(Q, Fun(A(T), R)) so that ifA is Q-variant q~* ~ Zrl(Q, Fun(A(T), R)) =~ 
q~* ~ Bp(Q, Fun(A(T), R)) so that A is weakly Q.variant. Obviously weak 
Q-variance always implies Q-variance. 

In the above proposition then, we have established a criterion for the 
coincidence of  Q-variance with weak Q-variance. The criterion is that if one 
can prove that HrI(Q, Fun(A(T),R))=O, Q-variance implies weak 
Q-variance. It is, however, practically impossible to calculate such a 
cohomology group because of  the size of  Fun(A(T), R)). We have to 
introduce some more restrictions on the gauge functions to faeilitate 
calculation. To this end, we define a more restricted type of  gauge variance 
under Q : -  Q-covariance. 

Definition (8) 
An action function A is said to be Q-covariant iff it is Q-variant and 

6" ~ Zp'(a, Hom(A(T), R)) 

Definition (9) 
An action function A is said to be weakly Q-covariant iffit is Q-covariant 

and 

6" ~ Bpl(Q, Hom(A(T), R)) 

These definitions immediately lead to propositions (10) and (I 1). 
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Proposition (10) 

Any action function which is weakly Q-covariant is equivalent to an 
action function invariant under Q. 

Proposition (11) 

Q-covariance and weak Q-covariance coincide iff 

HJ(Q, Hom(A(T), R)) = 0 

The proofs are exactly analogous to the proofs of  propositions (6) and (7). 
For this more restrictive type of Q-variance then, we require that the gauge 
function 4" of  an action function which is Q-covariant satisfy 

$*(Ar(T~. ~z)) = 4,*(Ar(~,)) + ~ba(Ar(r2)) 

In the following, proposition (11) is used to examine the relation between 
Q-covarianee and weak Q-covariance in classical relativistic and non- 
relativistic mechanics. 

3. Q-Covariance of Action Functions on Space-Time 

The criteria for the topological properties of the arenas of  classical 
relativistic mechanics and non-relativistic mechanics used in part (1) are 
certainly met. For relativistic mechanics, the choice is usually R 4 with the 
Euclidean topology. In this case R 4 is a pathwise connected, simply con- 
nected topological GL(4, R) module. Classical space-time is the topological 
product Ii 3 • R which is homomorphic to R 4. We take Minkowski-space 
with the R 4 topology to be a homogeneous space of the Poincar6 group and 
consider the variance of  action functions under 0(1, 3 ; R ) =  L the homo- 
geneous Lorentz group. Classical space-time is a homogeneous space of the 
Galilei group G = (R 3 | R)[~p E(3, R)v. Here E(3, R)v is the homogeneous 
Galilei group of rigid motions in 'velocity space' and p ~ Horn(E(3, R)v, 
Aut(R 3 @ R)) is just 

p(v, R): (x, t) ~ (gx + vt, t) 

where v is a 'velocity boost ' ;  R a rotation, and (x, t) ~ R 2 @ R a spatio- 
temporal translation. We define classical space-time as R 3 • R. 

Theorem (1) 
Hpl(L, Hom(R 4, R)) = 0,  or L-covariance 

covariance. 
coincides with weak L- 

Proof: We make use of the fact that the centre of L, the Lorentz group is 
Z(2)PT, the two-element cyclic group generated by the space-time reflection 

PT: x ~-> - x  V x ~ R 4 
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Now if ~ E ZI/(L, Hom(R 4, R)), the following conditions must be true: 

(i) 6(A) (xl + x=) = $(A) (xi) + ~b(A) (xz) V ^ e L, x , ,  x2 e R 4 

(ii) $(AI A2) (x) = r (x) + r (Ai q x) V x ~ R 4, A1 A2 e L. 

But C(L) = Z (2)PT, so that PTA = A P T  V A E L. Consequently 

r (x) = (o(PT) (x) + dp(A) ( -x)  = r (x) + r (A -~ x) 

This means that 

i.e. 

r  (x) = �89 (x) - 4~(PT) (A-~ x)) 
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or 
Hvl(L, H o m ( R  4, R)) = 0 

Theorem (2) 
HpI(E(3, R)v, Hom(R 3 | R)) # 0, so that for Galilei mechanics E(3, R)v 

covariance and weak E(3, R)v covariance do not coincide. 

Proof: We establish Hpl(E(3, R)v, Hom(R 3 | R, R)) # 0 by exhibiting a 
cocycle of ZpI(E(3, R)v, Hom(R3 | R, R)) which is not an element of the 
group BJ(E(3, R)v, Hom(R 3 | R, R)). 

Now any element (~ of Zol(E(3, R)v, Hom(R 3 | R, R)) must satisfy 

q~(V,/~) ((Xl, 1t) (X2, t2)) = ~(V, R) ((Xl + X2, tl + t2)) = ~(V, R) (xl, tl) 
+ ~(v, R)(x~, t9 (3.1) 

~((v !, R j) (v2, R2)) (x, t) = ~(Vl + RI v2, R1 R2) (x, t) = ~(vl, Rl) (x + t) 
+ q~(v/, R2) (R~l(x - vi tl, t)) (3.2) 

Because of the algebraic structure of the Galilei group (Whiston, 1969), 
there exist the following four monomorphisms: 

i l :  R 3 >'-~ R 3 ~) R 

iz: R )-~ R3 | R 

Jl : Rv 3 >--> E(3, R) v 

A: o0 ,  R ) ) ~ E ( 3 ,  R)v 

i1: x ~--> (x,0) 

/2: t F--> (O,t) 

Jl: v ~ (v,e) 

A: RI~(O,R) 
Via these monomorphisms, one can define cochains 

~b I ~ Fun(E(3, R) v, Hom(R ~, R)); qf,(v, R) = r o i 
r e Fun(E(3, R) v, Horn(R, R)); r R) = q~2(v, R) o/2 

~(A) = --~(8(r (A) 

where d?(PT) ~ Hom(R 4, R). Thus ~ ~ BpI(L, Hom(R 4, R)) and consequently 

BvI(L, Hom(R 4, R)) = ZvI(L, Hom(R 4, R)) 
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By condition (3.t) on r we can write equation (3.3) 

r R) (x, t) = el(v, R) (x) + r R) (t) (3.3) 

Further if we define cochains: 

r e Fun(Rv 3, Hom(R 3 | R, R)); r = q~ oj l  

4 2 E Fun(0(3, R), Hom(a 3 | a, R)); ~ oA = # 

then we obtain the following results via (3.1) and (3.2) above: 

~b2(R) (x, t) = 42(R) o i,(x) + 42(R) o i2(t) (3.4) 

~b'(v) (x, t) = ~l(v) o i,(x) + ~l(v) o i2(t) (3.5) 

q~2(Rt R2) o it(x) = ~2(RI) o i,(x) + ~2(R2) o i1(R-{ I x )  (3.6) 

q~l(vt + v2) o il(x) --- ~:(vl) o i,(x) + ~I(v2) o it(x) (3.7) 

q~1(vl + v2) o i2(t) = ~1(vl) o iz(t)  + ~t(v2) o i2(t) - ~l(v2) o i1(vt t) (3.8) 

Let us define a cochain ~2 z ~ Fun(0(3, R), Horn(R, R)) by ~b2Z(R) = ~2(R) o/2. 
Then it follows from (3.2) that in fact 

~2 z ~ Horn(0(3, R), Horn(R, R)) 

Since 0(3, R)=  Z(2)p | S0(3, R) (where Z(2)p is the two-element cyclic 
group generated by the parity operator P, and S 0(3, R) is the proper rotation 
group) and Horn(R, R) is torsion free and Abelian, Hom(0(3,R),Hom 
(R, R)) = 0, so ~z 2 vanishes. But ~l 2 ~ Fun(0(3, R),Hom(R 3, R)) defined by 
~12(R) = ~2(R) o il is by (3.6), a cocycle of  Zp1(0(3, R),Hom(R 3, R)). In a 
way similar to the proof of theorem (1) one can show that 

Zvl(0(3, R), Hom(R 3, R)) = B~,l(0(3, R), Hom(R 3, R)) 

Consequently ~bt 2 is a one coboundary of  the latter group. It follows that it 
gives rise to a coboundary of Bp 1(E(3, R)v, Hom(R 3 | R, R)) so that we may 
equate q~l 2 to zero. But d? 2 = ~i  z + 4~z z, so that 6z = 0. Thus, so far, we have 
shown that 

q~(v,R) (x, t)  = ~(v)  (x, t) (3.9) 
where 

q~l(Rv) (Rx, t) = ~l(v)(x, t ) .V R ~ 0(3, R) (3.10) 

Let us define more cochains: 

~11 ~ Fun(R,3, Hom(R 3, R)); ~btl(v) = ~t(v) o it 

$21 ~ Fun(gv 3, Horn(R, a)); q~zl(v) = ,~t(v) o i2 

Now, by (3.7), q~t t ~ Hom(Rv 3, Hom(R 3, R)) ~ Hom(R~ 3 | zR 3, R) where 
now R 3 |  is the tensor product of  Abelian groups. By (3.10), $1 t is 
invariant under 0(3, R), so $~  ~ Hom(Ro 3 | 3, R) and must be linearly 
related to the inner product: 

$1t(vi) (x) = ~v.x where ~ ~ R (3.I1) 
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The function ~2 i must satisfy the following identities: 

r + v9  (t) = r  + r - 4, '(v~)(v,  t) 

4~(v )  (t, + t9  = r (t,) + r  (t~) 

4)2t(Rv) ( t )  = $21(v) ( / )  V R G 0 0 ,  R) 

by (3.8) 
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(3.12) 

(3.13) 
(3.14) 

Consequently, we must have (32*(v)(t)=(e/2)),(v2)t, where y is some 
function from R to R which, by virtue of  (3.1t) and (3.12) must satisfy 

V((v~ + vz) 2) = V(vl 2) + y(v2 2) - 2vl "v2 (3.15) 

Thus y must be y(v 2) = v z and hence we have 

2 , ~ ( v ) ( t )  = ~ v  t 

and 

Thus 

q~l (v) (x, t) = q~(v, R) (x, t) = 2(v z t - 2v-x) 

ZvI(E(3, R) v, Hom(R 3 | R)) # Bvl(E(3, R), Hom(R 3 | R, R)) 

since q~ defined by ~(~)(v,R)(x,t)=(o~/2)(v2t-2v.x) is not a 1 co- 
boundary. In fact any one cocycle is cohomologous to such a cocycle since 
we choose a general element ~ of the group of one cocycles. �9 

Corollary (3) 

Any action function A which is E(3, R)v eovariant is equivalent to a 
'kinetic energy' function. 

Proof: Suppose that A is an action function which is E(3, R) v covariant. 
Then V (v, R) ~ E(3, R) v, 

A~","~(x, 7.) = ~ ( R - i ( x  - w) ,  7.) = A(x, 7.) + ~(v, R) (x, 7.) 

where (x,~-) is a path in R3 |  and q~eZpI(E(3,R)v, Hom(R3| 
We saw in the proof of theorem (2) that A must be equivalent to A' where 

A'(o'~)(x, 7.) = A'(R-I(x - vr), 7.) = A'(x, 7.) + ~(v 2 ~" - 2v'x) 

Thus, choosing R = e, v = x/7., we obtain: 

O~ 2 i ~ O~ X 2 
~ ' (X,  ";r) == A' (0 ,  7.) --  ~ (x) 7"- --~-~ (0, 7") --  ~ ( ~ )  7" 

If  r is interpreted as the time, then A'(0, 7.) is dependent only on the end 
point of the path, so that: 

A'(x, 7.) " "~ = - ~ (x )  r, a classical kinetic energy function �9 
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Conclusions 

Criteria have been established which enable one to decide when Q- 
variance of  an action function implies weak Q-variance or Q-invariance, 
and when Q-covariance implies weak Q-covariance. Using these criteria, we 
have been able to show that action functions which are Q-eovariant for 
Q =~ L, the Lorentz group, are equivalent to Q-invariant action functions. 
Action functions Q-covariant for Q-isomorphic to the homogeneous 
Galilei group are not necessarily weakly Q-covariant, but they are equivalent 
to actions which are classical kinetic-energy action functions. 

Appendix 
Algebraic Cohomology of  Groups 

Any sequence C =  (C",3")nE Z + of  Abelian groups C" and homo- 
morphisms 3" ~ Horn(C", C "+l) where 3" o 3 "-1 = 0 V n > 0, (3 -1 -= 0) is 
called a zero or semi-exact sequence. 3" o ~,-1 = 0 means that Im(3 "-i) = 
B" c Z" = Ker(3"). B" is called the group of n-coboundaries, Z" the group 
of n-cocycles and C" the group of n-cochains of  C. The group 

H" = Z"/B" 

is called the n-dimensional cohomology group of C. f i l l "  = 0 V n E Z +, C is 
called an exact sequence. Two cocycles equivalent modulus B" are called 
"cohomologous'. 

Given that Kis a Q-module (KaprioriAbelian) withp ~ Horn(Q, Aut(K)) 
defining the action of Q in K, a zero sequence Cp(Q,K) can be defined as 
follows. We write 

Cp'(Q, K) = Fun(Q", K) 

which are Abelian groups under pointwise addition, and define 

3" s Hom(Cp"(Q, K), Cp"+I(Q, K)) via 3 -1 = 0 
and 

3"(f) (ql , . . .q ,+l)  = P(qx) (f(qz . . . .  q,+a)) + (-1)"+if(q1 . . . .  q,) 
n+l 

+ ~ ( -1) t / (q l , . . .q ,q ,+l  . . . .  qn+a) 
l=l 

Then one can show (Maclane, 1967) that 3" o 3 "-I = 0. The group 

Hp"(Q, K) = Ker(3")/Im(3 "-~) = Z~(Q, K)/Bp"(Q, K) 

is called the n-dimensional cohomology group of  Q in K. Thus, the group 
Hip(Q, K) is the additive group of  all 1-cocycles of  Q in K: 

( f ~  Zpt(Q, K) i f f3(f)  (ql, qz) = P(ql) (f(q2)) - f(ql qz) + f (q)  = O) 

modulus the subgroup Bp~(Q, K) of 1-coboundaries: 

( f '  ~ B.Z(Q, K) i f f3  k ~ K~rf'(q) = ~(~) (q) = p ( q )  (k) - k) 
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